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A constructible regular polygon is one that can be constructed with compass and (unmarked) 

straightedge.  For example the construction on the right below consists of two circles of equal 

radii. The center of the second circle at B is chosen to lie anywhere on the first circle, so the 

triangle ABC is equilateral – and hence equiangular. 

                                     

Compass and straightedge constructions date back to Euclid of Alexandria who was born in 

about 300 B.C. The Greeks developed methods for constructing the regular triangle, square and 

pentagon, but these were the only „prime‟ regular polygons that they could construct. They also 

knew how to double the sides of a given polygon or combine two polygons together – as long as 

the sides were relatively prime, so a regular pentagon could be drawn together with a regular 

triangle to get a regular 15-gon. Therefore the polygons they could construct were of the form 

       N = 2
m

3
k
5

j
 where m is a nonnegative integer and j and k are either 0 or 1. 

The constructible regular polygons were 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, ... but 

the only odd  polygons in this list are 3,5 and 15. 

              
The triangle, pentagon and 15-gon are the only regular 

polygons with odd sides which the Greeks could construct. 

 

If n = p1p2 …pk where the pi are odd primes then n is constructible iff each pi is constructible, so  

a regular 21-gon can be constructed iff both the triangle and regular 7-gon can be constructed. 

This does not settle the question of constructing polygons with p
k
 sides for k  >1 and this issue 

will be addressed below. 

That was where things stood for about 2000 years, when 19 year-old Carl Friedrich Gauss 

showed that a regular 17-gon was constructible in 1796.  He did this by showing that the solution 

to the cyclotomic equation x
17

 = 1 can be reduced to a succession of nested quadratic equations. 

He published this discovery five years later in Disquisitiones Arithmeticae  and generalized the 

process to show that a prime regular polygon was constructible whenever  it was of the form p = 

2
k
 – 1 because k must be a power of 2. This guaranteed that there will be a sequence of nested 

quadratic equations for the construction. 



Primes of this type are called Fermat primes. Pierre de Fermat (1601- 1655)  mistakenly assumed 

that they would all be prime. They are all of the form 22 1
n

nF   , but there are only 5 such 

primes known. They are F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.  

Gauss conjectured that the constructability condition was also necessary but this was not proven 

until 1837 by Pierre Wantzel.  This converse was not trivial because it required a proof that a 

regular polygons of the form p
k
 with p prime cannot be constructed if k > 1. This is easy to see 

for n = 9 because a 40° angle cannot be constructed. For a prime polygon to be constructible, the 

critical fact is that the irreducible equation for cos(2π/p) + isin(2π/p) is degree φ(p) = p-1 and this 

has to be of the form 2
k
 . Replacing p with p

m
, it can be shown that the irreducible equation has 

degree φ(p
m

) which is 2
m-1

 (p-1) and this is never of the form 2
k
 when m > 1. 

Therefore unless new Fermat primes are discovered , there are only 5 prime regular polygons 

which can be constructed.  The rule is  “A regular n-gon can be constructed with compass and 

straightedge iff n is the product of a power of 2 and any number of distinct Fermat primes.”    

n = 2
m

 p1p2..pk where m is a non-negative integer and each pj is either 1or the jth Fermat prime. 

The number of constructible regular primes with an odd number of vertices is now 2
5
-1 = 31. 

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Constructible? Y Y Y Y N Y N Y N Y N N Y Y Y 

 

The ultimate level of constructability would be a lattice polygon where the vertices lie on an 

integer lattice as shown on the left below. However the only regular lattice polygon is the square 

– although the octagon shown here is equiangular. There are no other equiangular lattice 

polygons besides the rectangle and octagon. (Using Pythagorean triples, equilateral lattice 

polygons are easy to construct, but they must have an even number of sides. This means there is 

an equilateral octagon and an equiangular octagon, but never at the same time.) The hexagon 

shown here at bottom left and the embedded triangle are almost equiangular.Allowing vertices in 

the rationals  clearly makes no difference, but allowing one more dimension yields a regular 

triangle and regular hexagon. On the right is a regular triangle in Z
3
 with coordinates {0,0,0}, 

{4,1,1} & {1,4,1}.Going beyond 3 dimensions does not yield new regular lattice polygons.See 

LatticePolygons.pdf. 

 

        
               

 

http://geneticsofpolygons.org/PDFs/LatticePolygons.pdf


Basic construction techniques: 

                                                     

A compass and straightedge construction assumes a compass and unmarked straightedge. Each 

step consists of one of the following: 

1. Drawing a line between 2 points 

2. Constructing a circle with a given radius and given center 

3. Finding the points of intersection of two lines, 2 circles or a line and a circle 

The issues that have been of interest since the time of the Greeks are 

(i) Which numbers are constructible? 

(ii) Which angles are constructible? 

(iii) Which polygons are constructible?  

To determine which number are constructible: 

The Greeks assumed (as we do today) that in any given construction, there is a basic line 

segment with length 1 and all other lengths are relative to this line segment. If  a and b are 

known lengths, then a + b,  a−b , ab and a/b can be constructed with just a straightedge as shown 

below. (In the last two diagrams, the angle θ is arbitrary and the dashed lines are parallel.) 

  

                    

 



If the compass is just used to mark off lengths, the set of numbers constructible is the rationals 

. The rationals are known as a „number field‟ because they are closed under the „rational‟ 

operations of addition, subtraction, multiplication and division (by non−zero elements). Other 

examples of number fields are the reals and the complex numbers. 

This is the first „level‟ of constructability so the „base‟ field is F0 = . The second level involves 

picking any non-square element of z of F0 and setting F1 = {a + b√ : a,b in F0}. The elements of 

F1 are constructible because √  is constructable with straightedge and compass as shown below: 

                                          

It is easy to see that F1 is also a number field and it contains F0 as a subfield, so it is an extension 

field of F0. This process can be continued to any depth to achieve a sequence F0, F1,…,Fn of 

nested number fields where F0 =  and Fj+1 is the extension field of Fj obtained by adjoining √  

to Fj where z is in Fj   (so Fj+1 can be written Fj[√ ] ). 

No construction with straightedge and compass can ever yield numbers outside these nested 

chains of fields because the equations for intersection of lines and/or circles are never worse than 

quadratic. Therefore every constructible number must be in one of the extension fields Fj and 

conversely every element of a field Fj must be constructible. These are called Euclidean 

numbers. 

Example: At depth n = 3, an expression such as √   √  √  can be obtained with K1 = 

Q[√ ], K2 = K1[√  √ ] and K3 = K2[ √   √  √  ]. In terms of straightedge and compass, 

each number is constructible from the previous.  

All even roots can be found by this method but how about odd roots ? Suppose there is a finite 

tower of  constructible extensions: F0  F1  F2 …  Fk. At each stage the extension must be 

degree 2 (quadratic) and it is easy to prove that the degrees are multiplicative, so Fk would have 

to be degree 2
k
 in F0 , which we usually assume is . ( Richard Dedekind introduced the concept 

of the degree of an extension in 1873 and at that time he proved the multiplicative property.) 

So the roots of a cubic equation are only constructible if there is at least one rational root, 

because then this root can be factored out leaving a quadratic. If the cubic is not reducible in this 

fashion then it is not possible to construct the roots. This means it is impossible to double the 



volume of a cube with compass and straightedge. Assuming an original edge length is 1, the new 

cube would have a side x, where x
3
 = 2. This equation is not reducible so √ 

 
 is not a 

constructable number. 

The Wikipedia definition: constructible numbers (those that, starting with a unit length, can be 

constructed with straightedge and compass). These include all quadratic surds, all rational 

numbers, and all numbers that can be formed from these using the basic arithmetic operations 

and the extraction of square roots.  

The three classic Greek problems that could not be solved by Euclid‟s methods are: 

 

 

Doubling the volume of a cube 

 
 

 

Trisecting an arbitrary angle 

 
 

 

Finding a square with area equal to a circle 

 
 

Clearly an angle θ is constructible if and only if cos(θ) is constructible. To prove that it is 

impossible to trisect 60° with compass and straightedge, note that any solution θ must satisfy 

cos3θ = 4cos
3
θ – 3cosθ but when x = 2cos20°,this becomes x

3
 −3x−1 = 0 which is irreducible. 

Since cos20° is not constructible, 20° is not constructible. 

It is more difficult to show the impossibility of „squaring‟ a circle with straightedge and 

compass. Assuming that the circle has radius 1, the square would have side    √  . In 1768 

Johanne Lambert proved that π was not rational and he conjectured that π and e were both 

„transcendental‟ and hence not constructible. Recall that the algebraic numbers are defined to be 

the real (or complex) numbers which are solutions to a polynomial equation of degree n with 

integer coefficients. The transcendental numbers are the complement of this set. However in 

1768, no number had been proven to be transcendental. In 1873 Charles Hermite showed that e 

was transcendental.  

In 1882 Ferdinand von Lindermann used Hermite‟s result and Euler‟s identity e
iπ

 = − 1 to show 

that π was transcendental. The first person to actually construct a transcendental number was J. 

http://en.wikipedia.org/wiki/Constructible_number


Liouville in 1851. Later, Georg Cantor (1845,1918) showed that the set of algebraic numbers is 

countable, so the set of transcendental real numbers is uncountable. (For this outrage he was 

branded a "scientific charlatan", and a "corrupter of youth” by such notable mathematicians as 

Henri Poincare and Leopold Kronecker.) 

Since the constructible numbers are a subset of the algebraic numbers, transcendental numbers 

such as π and e and   √  are certainly not constructible. In fact a
b
 is transcendental whenever a is 

algebraic and not 0 or 1, and b is any irrational algebraic number. 

Constructible Regular Polygons – Cyclotomic Fields 

Constructing a regular polygon with n sides is the same as dividing a circle into n equal parts, 

and this is the same as finding Cos(2π/n) or Sin(2π/n).  

                              

Most trigonometric expressions are transcendental, so there was interest in those which are 

algebraic. Mathematica will attempt to make this distinction. For example Element[Cos[2 

Degree], Algebraics] = False but Element[Cos[2Pi/7],Algebraics] = True  

The vertices of a regular polygon are always algebraic because they are (complex) solutions to z
n
 

= 1. This is called the nth cyclotomic equation. Of course only certain algebraic numbers are 

constructible and Gauss realized that cos(2Pi/17) is one of them. 

We will look at Gauss‟s technique in detail. It is covered in his Disquisitiones Arithmeticae 

(Arithmetical Investigations) which was published in 1801 but it still very readable today. Gauss 

started work on it 1796 when he was 19 years old and in his first year at the university of 

G ̈ttingen. This was the winter that he realized that for a prime p, the roots of the (reduced) 

cyclotomic equation could be partitioned in a natural way using modular arithmetic and “I was 

able to make on the spot the special application to the 17-gon and verify it numerically.” (Gauss 

was a calculation wizard who also made good use of trigonometric tables and logarithms.)   

The constructability of the regular 17-gon was merely one application of the general theory 

concerning congruences of the form a
n
 – 1 mod p and in particular x

p-1
 – 1 ≡ 0 mod p. He 

discovered that the set of permutations that map the roots to themselves (known today as the 



Galois group) provide a natural decomposition of the roots. The bulk of Disquisitiones 

Arithmeticae is an thorough investigation of modular arithmetic and its applications. For its 

methods and results, this was one of the most influential books of the early 19
th

 century and it 

laid the foundations for algebraic number theory, abstract algebra, and analytic number theory. 

Gauss‟s suggestion that cyclotomic theory could be extended to the lemniscape became a key 

issue in the work of Neils Able (1802−1829), on elliptic functions. Able read Disquisitiones 

Arithmeticae as a schoolboy in Norway and at age19 he extended the techniques of Joseph-Louis 

Lagrange (1736-1813) and Gauss to prove that the quintic was not solvable by radicals. He was 

making progress in the general case of solvability before he died of tuberculosis at age 27. By 

1809 Disquisitiones Arithmeticae was translated into French and Evariste Galois (1811−1832) 

generalized both Gauss‟s techniques and those of Abel to obtain results about solvability for 

equations in general. Abel and Galois independently invented the language of group theory and 

Galois showed that field extensions and groups of automorphisms were the key to understanding 

solvability. This area of study is now known as Galois Theory. 

 
  

   C.F. Gauss (1777-1855) Neils Able (1802−1829) Evariste Galois 1811−1832) 

 

We will briefly discuss the theory of cyclotomic equations and then look at Gauss‟s original 

work. Following that we will state the fundamental theorem of Galois theory and compare this 

approach to solving cyclotomic equations. The „base‟ field for most investigations will be the 

field of rational numbers, .  

A field K is an extension field of a field F, if F is a subfield of K. Therefore the extension field is 

usually written as K/F. The complex numbers  are an extension field of the reals and the reals 

are an extension field of the rationals . Every field extension K/F is also a vector space over F, 

where the 'scalars' are elements of F. [K:F] denotes the dimension (or degree) of this vector 

space. For example [ : ] is degree 2 with basis {1,i} and [ : ] is an extension with degree 

equal to the cardinality of the continuum because it would be necessary to adjoin a continuum of 

numbers to the rationals to get the Reals. 

 

 



A 'simple' extension of a field F is formed by adjoining a single element . In this case the 

extension can be written as F( ).  For example the complex numbers are a simple extension of 

the reals so = () where  = √  . This is also called an algebraic extension because 2
 +1 = 

0. (If there is no such polynomial with coefficients in the „base‟ field, the extension is 

transcendental.) The resulting field is also called a 'splitting field' because the polynomial  2
 +1 

can be factored.  As indicated earlier, the numbers that can be generated in this fashion using 

as the root field are called algebraic numbers and the remaining numbers are transcendental. 

Definition: An algebraic number is a number that is a root of a non-zero polynomial in one 

variable with rational coefficients. The minimal polynomial of an algebraic number z is the 

unique irreducible  polynomial p(x) with rational coefficients and leading coefficient 1, such that 

p(z) = 0. 

Definition: A number field is a finite algebraic extension of  

So  itself is a number field. The extension field (√ ) consists of all numbers of the form  

{a+ b√   where a and b are rational. This field supports all the „rational‟ operations of addition, 

subtraction, multiplication and division by non-zero elements. It contains  and is degree 2 so it 

is called a (real) quadratic field. Every number in this field is constructible and this is true for 

any even root. Every number field is of the form ( z) for some z so all number fields are 

simple extensions of . The cyclotomic fields are a very important class of number fields.  

Definition: The nth cyclotomic field is Kn = (z) where z is a primitive nth root of unity. 

The corresponding cyclotomic equation is z
n
 = 1. There are always n (complex) solutions which 

can be written as  zk = Cos(2πk/n) + iSin(2πk/n) for k = 0,1,2,..,n−1. The primitive roots of the 

cyclotomic equation are those where z
n
 = 1 and n is the smallest positive integer with this 

property. There are always φ(n) primitive roots and any one of them can be used to generate the 

cyclotomic field Kn. They share the same minimal polynomial so they are called Galois 

conjugates. The corresponding minimal polynomial is called the nth cyclotomic polynomial Φ(n).   

 

Definition: The nth cyclotomic polynomial is Φn(x) = 
1
( ) (z  primitive)

n

k kk
x z


  

 

Example: For n = 6,  z1 and z5 are the only primitive roots, so the minimal cyclotomic 

polynomial Φ6(x) = (x  – z1)(x – z5) =  x
2
 – x + 1 since z1 + z5 = 2cos(2π/6) = 1 and z1z5 = 1. 



                                               

In Mathematica: Cyclotomic[6,x] yields 1-x+ x
2
. Note also that 

Cyclotomic[6,x]*Cyclotomic[3,x]*Cyclotomic[2,x]*Cyclotomic[1,x] = 
2 2( 1 )(1 )(1 )(1 )x x x x x x        = x

6
-1. (By convention Cyclotomic[1,x] = x -1). This is 

always true, so Φn can be obtained by dividing x
n
-1 by the product of the Φd‟s where d is a 

divisor of n (excluding n). When n is prime, the only divisor is Φ1(x) = x-1. 

Example: When n = 5, there are four primitive roots. Setting z = cos(2π/5) + isin(2π/5) the 

remaining roots can be written as powers of z. 

                             

For constructability, it is just necessary to find cos(2π/5). The Greeks could do this easily using 

the Pythagorean Theorem to obtain cos(2π/5) =  
 

 
(1+√ ). We will use this example to illustrate 

the general procedure for solving cyclotomic polynomials.  The first step is to divide   z
5
 = 1 by z 

−1 to get the irreducible cyclotomic polynomial: Φ5(z) = z
4
 + z

3
 + z

2 
+z + 1 = 0 .  

Choose a primitive root such as z = cos(2π/5) + isin(2π/5). The complete set of primitive roots is 

{z, z
2
, z

3
,z

4
 }. Note that the four roots can be paired off into complex conjugates, so define         

s1 = z + z
4
 and s2 = z

2
 + z

3
. Both s1 and s2 are real, and in fact s1 = 2cos(2π/5). To get an equation 

for s1, note that s1 + s2 = − 1 and s1s2 = − 1. This yields the polynomial x
2
 + x −1 = 0 whose roots 

are s1 and s2 , so s1 =  √  −1)/2.  It must be the positive root since cos(2π/5) is positive. This 

implies that cos(2π/5) =  √  −1)/4  and is therefore constructible.  



This procedure is much more general than the Pythagorean Theorem and it can be extended to all 

regular polygons. The prime cases are the most important, but of only a few yield nested 

quadratic equations which can be constructed. Let‟s see what goes wrong with n = 7. 

Example 2: For z
7
 = 1, the cyclotomic polynomial is Φ7(z) = z

6
 + z

5
 + z

4
 + z

3
 + z

2
 + z  + 1 = 0 

and again we assume z = cos(2π/7) +isin(2π/7) as shown below 

                                              

Set  s1 = z + z
6
  ,  s2  = z

2
 + z

5
  ,  s3 = z

3
 + z

4
  Then  s1+ s2+ s3 = −1 and  s1s2 + s1s3 + s2s3 = −1 + 

−1 = −2  and s1s2s3 = 1.  

This implies that s1, s2 and s3 satisfy x
3
 + x

2
 −2x – 1 = 0. Any roots of this equation would have 

to be integers and also divide −1, but niether 1 not −1 are roots, so this is the minimal equation 

for 2cos(2π/7). The minimal polynomial for cos(2π/7) is therefore 
3 28 4 4 1 0x x x    . which 

is also irreducible. Since this is a cubic, the roots cannot be constructed and the regular heptagon 

is not constructible. 

To do this with Mathematica: V = ComplexExpand/@Roots[z^7==1,z]: 

3 3
1|| i [ ] [ ] || i [ ] [ ] || [ ] i [ ]

14 14 14 14 7 7

3 3
|| [ ] i [ ] || i [ ] [ ] || i [ ] [ ]

7 7 14 14 14 14

z z Cos Sin z Cos Sin z Cos Sin

z Cos Sin z Cos Sin z Cos Sin

     

     

   

     
 

By convention, the list starts with z = 1. The second element is iCos[3π/14] + Sin(3π/14) which 

is the same as z = Cos[2π/7] + iSin[2π/7], so this list matches the diagram above.  

To extract the roots from V: Roots= Table[V[[k]][[2]],{k,1,7}];  

Vertices= Table[{Re[#],Im[#]}&/@ Roots]; 

 

Graphics[{Circle[], AbsolutePointSize[6.0], Point[Vertices], EdgeForm[Blue], 

FaceForm[White], Polygon[Vertices]}, Axes−>True] 

 



 
To get the minimal polynomial for cos(2π/7) : 

MinimalPolynomial[Cos[2*Pi/7]] = 2 31 4#1 4#1 8#1 &      

In Mathematica #k represents the kth argument to a (pure) function. For example a pure function 

can be defined as  f = #1+ #2^3 & where „&‟ says to apply this function to what follows, so  

f[2,3] is the same as #1+#2^3 &  [2,3] which gives 29. The result above tells us that the answer is 

a pure function of degree 3 with a single argument. To get the answer as a function of x: 

2 31 4#1 4#1 8#1 &[ ]x     = 
3 28 4 4 1 0x x x     as we discovered earlier.  

This equation is irreducible over but the Fundamental Theorem of Algebra guarantees that 

roots exist. For a cubic, these formulas are well known. In Mathematica, Solve[x^3+ x^2-2*x-

1==0,x] will use traditional formulas (which have the peculiar property that the real roots are 

expressed in terms of imaginary radicals.  This can be avoided by using trigonometric forms, but 

we already know the trigonometric form of the vertices.) 

2/3
1/3

1/3

1 7 7
{ ( 1 ( (1 3i 3)) )},

13 2
( (1 3i 3))
2

x     



  (= s1 = 2*Cos[2Pi/7] ≈ 1.2469796037) 

2/3
1/3

2/3 1/3

1 7 (1 i 3) 1 7
{ (1 i 3)( (1 3i 3)) },

3 6 232 (1 3i 3)
x


    


 

2/3
1/3

2/3 1/3

1 7 (1 i 3) 1 7
{ (1 i 3)( (1 3i 3)) }}

3 6 232 (1 3i 3)
x


    


  

Galois Theory shows that any cyclotomic (or cyclic) polynomial is explicitly solvable by radicals 

over Q. In fact the roots above can be obtained without using formulas by applying the theory of 

symmetric functions. To back up to Φ(z) we can solve s1= z + z
6
 for z. This is quadratic because 

z
6
 = 1/z , so the resulting equation is degree 6 as it must be.  



There are formulas for the minimal polynomials of cos(2π/n) and sin(2π/n).These polynomials 

are closely related to the Chebyshev polynomials of the second kind. In Mathematica type 

MinimalPolynomial[Cos[2Pi/n]] or MinimalPolynomial[Sin[2Pi/n]] 

When n is prime, the primitive roots form an even number of conjugare pairs and this guarantees 

that the degree of the minimal polynomial for cos(2π/n) will be φ(n)/2. Since cos(2π/n) and 

sin(2π/n) are related quadratically, the degree of sin(2π/n) will be φ(n). 

In general the relationship is as follows (from Paulo Ribenboim,Algebraic Numbers) 

(i) deg(cos(2π/n) = φ(n)/2   

(ii) If n ≠ 4 and  n = 2
r
m for m odd, 

( )  if r = 0 or 1

1
deg(sin(2 / ) ( )  if r = 2

4

1
( )  if  r 3

2

n

n n

n



 



 
 
 
 

  
 
 

  

 

For example when n = 12, φ(n) = 4 and the minimal polynomial for cos(2π/12)  is 4x
2
 -3 while 

the minimal polynomial for sin(2π/12) is just 2x – 1. The polynomials become more unwieldy as 

n increases. N = 11 is the first to requires a quintic.  

Below is a comparison of Φn(x) and the corresponding minimal polynomial of 2cos(2π/n) 

MatrixForm[Table[{k,Cyclotomic[k,x],MinimalPolynomial[2*Cos[2*Pi/k]][x]},{k,3,16}]] 

2

2

2 3 4 2

2

2 3 4 5 6 2 3

4 2

3 6 3

2 3 4 2

2 3 4 5 6 7 8 9 10 2 3 4 5

2 4 2

2 3

3 1 1

4 1

5 1 1

6 1 1

7 1 1 2

8 1 2

9 1 1 3

10 1 1

11 1 1 3 3 4

12 1 3

13 1

x x x

x x

x x x x x x

x x x

x x x x x x x x x

x x

x x x x

x x x x x x

x x x x x x x x x x x x x x x

x x x

x x x

  



      

   

         

  

   

      

              

   

    4 5 6 7 8 9 10 11 12 2 3 4 5 6

2 3 4 5 6 2 3

3 4 5 7 8 2 3 4

8 2 4

1 3 6 4 5

14 1 1 2

15 1 1 4 4

16 1 2 4

x x x x x x x x x x x x x x x

x x x x x x x x x

x x x x x x x x x x

x x x

              

        

         

  

  



Disquisitiones Arithmeticae of C.F.Gauss (1801) 

The 19
th

 century is often regarded as the „Golden Age‟ of mathematics because of the great 

advances made by people such as Gauss, Able , Galois, Lagrange, Cauchy, Riemann, 

Weierstrass, Dedikind, Brouwer, Hilbert and Cantor.  

Gauss completed work on Disquisitiones Arithmeticae 1798 when he was just 21 years old and a 

student at G ̈ttingen. It was written in Latin which was still the language of choice for 

mathematicians in the early 19
th

 century. We will use an English translation published by 

Springer Verlag in 1986. Below is the table of contents.  

 

Section I   Congruent Numbers in General 

Section II  Congruences of the First Degree 

Section III  Residues of Powers 

Section IV Congruences of the Second Degree 

Section V   Forms and Indeterminate Equations of the Second Degree 

Section VI    Various Applications of the Preceding Discussions 

Section VII   Equations Defining Sections of a Circle 

           

Gauss was born in 1777 in Brunswick (Braunschweig), in the duchy of Braunschweig-

Wolfenbütte. His talents were recognized early and his education was supported by the Duke of 

Brunswick who allowed him to attend the university at G ̈ttingen. The university was founded in 

1737 by the British king George II – who was German by birth. 

 

   
The duchy of Brunswick Gottingen (Hanover) 

 

In 1795 when Gauss arrived at the university, he was treated to a very impressive library, where 

students could actually borrow books. Gauss was very adept at learning on his own. He read 

works of Leonhard Euler (1707-1783) and Euler‟s doctoral student Joseph-Louis Lagrange 

(1736-1813) as well as Adrien-Marie Legendre (1752-1833). (In Disquisitiones Arithmeticae 

Gauss quotes 29 articles of Euler, 8 of Lagrange and 2 of Legendre.) 



Throughout his life Gauss accumulated his own library of works – not all of which were on 

science and mathematics. He was interested in literature and philosophy as well. One of the first 

books he borrowed from the G ̈ttingen library was Clarissa, by Samuel Richardson 

which was very popular at the time. Gauss‟s calculating prowess was aided by tables of 

logarithms.The duke of Brunswick gave him Johann Schulze's two volume set of books on 

logarithms and trigonometry. He would eventually add many more such books to his collection. 

As a young man, Gauss was fascinated by number theory where his computational abilities were 

of great value. He was to later remark “Mathematics is the Queen of sciences and number theory 

is the Queen of mathematics.” He compiled extensive tables based on his own investigations and 

those of Euler and Lagrange and Legendre . The major result in Disquisitiones Arithmeticae is a 

proof of the law of quadratic reciprocity – which was first conjectured by Legendre and 

independently formulated by Gauss. 

 

In Section III (Residues of Powers), Gauss begins the study of geometric progressions with the 

classic theorem of Fermat: (article 50):  

 a
p-1 

≡ 1 mod p (where p is an odd prime and a is not a multiple of p) 

So 5
6 

≡1 mod 7 and in fact 5 has the maximal possible period which is 6. The members of this 

cycle are {5, 5
2
, 5

3
, 5

4
, 5

5
, 5

6
} ≡ {5,4,6,2,3,1} mod 7. In Euler‟s language 5 is a „primitive root‟ 

mod 7.  

 

In modern terminology, the integers mod 7 are an example of a finite field. The additive and 

multiplicative tables are shown below. These are called Cayley tables after Arthur Cayley (1821-

1895).  The multiplicative group is called  Z7
*
. It has only 6 elements, but in the table 0 is 

included for comparison with the additive table. In Mathematica, using the Abstract Algebra 

package, SwitchStructureTo[Ring]; CayleyTables[Z[7], Mode ->Visual])  

 

 

To see why 5
6
 ≡ 1 mod 7, note that (6·5)(5·5)(4·5)(3·5)(2·5)(1·5) = 6!5

6
 and the numbers (6·5), 

(5·5),.., (1·5) must all be distinct mod 7, because 5 and 7 are relatively prime. Therefore the left 

side is 6! mod 7. The 6! term can be cancelled on both sides because 6! is relatively prime with 

7. The general proof of Fermat‟s theorem follows these same lines. 

Out[44]=

Add.

y

x

0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

Mult.

y

x

0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1



Even though Z7
*
 is a cyclic group, not all the elements are generators. The only generators of Z7

*
 

are 3 and 5. The number of generators is always φ(p-1). Of course Fermat‟s theorem works for 

the remaining elements of Z7
*
, but their prime period is less than 6. For example {2, 2

2
, 2

3
, 2

4
, 2

5
, 

2
6
} ≡ {2,4,1,2,4,1}. This defines an order 3 subgroup of Z7

*
. It is easy to prove that a cyclic 

group G must have a subgroup for every divisor of o(G). The only other non-trivial subgroup of 

Z7
*
 is {6,1} which is generated by 6. 

As Gauss realized, there is a close connection between Fermat‟s theorem and cyclotomics via the 

congruence x
p-1

 ≡ 1 mod p for prime p. Below is a letter he wrote to Christian Gerling who was a 

former student: 

“Already earlier I had found everything related to the separation of the roots of the 

equation x 
p-1

 -1  ≡ 0 into two groups on which the beautiful theorem in the D. A. on 

p. 637 (article 357) depends, in the winter of 1796 (during my first semester in Gottingen), 

without having recorded the day. By thinking with great effort about the relation of all the roots 

to each other with respect to their arithmetic properties, I succeeded, while I was on a vacation 

in Braunschweig, on that day (before I got out of bed) in seeing this relation with utmost clarity, 

so that I was able to make on the spot the special application to the 17-gon and to verify it 

numerically.” 

 

When p = 17, the corresponding group determined by Fermat‟s theorem is Z17
*
 which has 16 

elements and is cyclic. The separation of the roots that Gauss discovered, was generated by the 

subgroup of order 8. Subsequent subgroups of order 4,2 and 1, completed the chain of quadratic 

extensions necessary for construction of the 17-gon.  

Gauss did not use the language of groups, but he knew the cycles and periods of congruences. 

These are now called Gaussian periods. He knew that 3 was a primitive root of 17 and he used 

this generator to find the correct partition of the roots. In modern cyclotomic theory, the group 

Z17
*
 is called the Galois group for p = 17. It is the group of automorphisms which map the 16 

primitive roots to themselves.   

(Note that the full set of p vertices also forms a group under (complex) multiplication, but these 

vertices are not independent and the corresponding equation is not irreducible. Gauss was one of 

the first mathematicians to realize the importance of working only with irreducible equations.) 

To see the connection between Fermat‟s result and quadratic reciprocity, suppose p is an odd  

prime, so it is of the form p = 2q + 1. Then Fermat‟s theorem says that a
2q

 – 1 ≡ 0 mod p, so 

a
2q

 –1 =  (a
q
 – 1)(a

q
 + 1) ≡ 0 mod p 

This gives two possibilities: a
q
 ≡ 1 or a

q
 ≡ –1 mod p  (where q = (p-1)/2). The choice clearly 

depends on the relationship between a and p.  



For example with a = 5 and p = 7, we saw above that 5
6
 ≡1 (mod 7) but this does not tell us 

whether 5
3
 ≡ 1 or 5

3
 ≡ –1. In the first case, 5 is said to be a quadratic residue mod 7 and 

otherwise it is a non-residue. Here 5
3
 ≡ 6 mod 7 ≡ –1 , so 5 is a non-residue mod 7. The only 

residues mod 7 are 1, 2 & 4 so 3,5 & 6 are non-residues. 

Definition: An integer a is a quadratic residue mod n iff there is an integer x such that a ≡ x
2 

mod n. 

So quadratic residues are perfect squares mod n. In the case of n = 7, if there was a solution to 5 

≡ x
2
 , then (x

2
)
3
 would have to be 1, but we know that 5

3
 ≡ –1. 

For a given prime p, there are only p-1 possible a‟s and they are evenly divided among the 

residues and non residues. As Gauss points out in article 107, for a given prime p. it is easy to 

find the residues and nonresidues by simply making a table of all possible squares that could 

appear mod p. Clearly we only need to compute the squares of 1,2,..,(p-1)/2 mod p. 

In Mathematica: Table[Mod[n^2,13], {n,1,6}] = {1,4,9,3,12,10} gives the 6 residues mod 13. 

The hard part is to determine the distribution of these residues. For example, which primes have 

3 as a residue ?  From the table above, p = 13 is one such prime because 4
2
 ≡ 3 mod 13. Among 

the first six odd primes, 3 is only a residue for p = 11 and p = 13. Euler, Lagrange, Legendre and 

Gauss were all interested in the distribution of these residues (and the distribution of primes in 

general). Quadratic residues have many applications. They can be used to solve second degree 

congruences or to factor certain large numbers. Gauss discovered that they also play a role in 

cyclotomic theory. 

In article 108 Gauss proves that -1 is a (quadratic) residue of all primes of the form 4k + 1 and a 

non-residue of the 4k + 3 primes. For example -1 ≡ 12 mod 13 and this is in the list of residues 

above. Note that 13 and 17 are „twin‟ 4k + 1 primes, and clearly 16 is a residue mod 17. Every 

Fermat prime p is of the form 4k + 1, so p-1 is always a residue. 

The composite cases can be determined from the primes, so the crucial cases are when two 

primes are residues of each other. The  fundamental theorem – Section IV,  article 131: 

“If p is a prime number of the form 4n+1, +p will be a residue or nonresidue of any prime 

number which taken positively is a residue or non residue of p. If p is of the form 4n+3, -p will 

have the same property.” 

 

Gauss explains at the end of Section IV that this simple form of the theorem was unique, but that 

Euler used this fact in his work and later realized that he could not provide a proof. Legendre 

attempted a proof but he realized that his proof depended on propositions which he could not 

demonstrate. Gauss‟s proof is about 30 pages long and has multiple cases to consider. In Gauss‟s 

words “The proof tortured me for the whole year and eluded the most strenuous efforts, before 

finally, I got the proof explained in the fourth section of Disquisitiones Arithmeticae.” 

 



Example: To find whether 3 is a quadratic residue mod 13, note that 13 is a 4n+ 1 prime so we 

can use reciprocity and ask the simpler question of whether 13 is a residue mod 3. The equation 

x
2
 ≡ 13 mod 3 is the same as x

2
 ≡ 1 mod 3, and this has the trivial solution x = 1, so the answer is 

„yes, 3 is a residue mod 13 because 13 is a residue mod 3‟. Given that 3 is a quadratic residue of 

13, it may still be difficult to find the corresponding square. In this case the numbers are small 

and we already know from the table above that 4
2
 ≡ 3 mod 13.   

 

Equations Defining Sections of a Circle (Section VII of Disquisitiones Arithmeticae) 

“Among the splendid developments contributed by modern mathematicians, the theory of 

circular functions without a doubt holds a most important place. …The reader might be 

surprised to fund a discussion of this subject in the present work which deals with a discipline 

apparently so unrelated; but the treatment itself will make it abundantly clear that there is an 

intimate connection between this subject and Higher Arithmetic.” 

Gauss assumes a cyclotomic equation x
n
 = n, with n an odd prime and X is the reduced 

cyclotomic equation: r
n−1

 + r
n−2

 + … + r + 1 = 0 (which we call Φ(n)) 

Article 354 (n = 17) “Here n − 1 = 2·2·2·2 so the calculation will be reduced to four quadratic 

equations. For the positive root we will take the number 3. The least residues of its powers 

relative to the modulus 17 are the following:”  (*Note that 3 will generate Z17
*
 the multiplicative 

group mod 17 which  is isomorphic to the Galois group G. In Appendix A, we will repeat 

Gauss‟s steps in the framework of Galois theory. For any Fermat prime greater than 3, 3 is a 

quadratic nonresidue by the reciprocity theorem, so it is always a primitive root.*) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 

 

“From this we derive the following distributions of the complex Ω into two periods of 8 terms 

each, then four of four terms each, and eight of 2 terms.” (Since [1] represents the root r
1
, the 

notation (8,1) is the period 8 sum of the powers of r
1
, so it is every other term in the table above: 

(8,1) =  r + r
9
 + r

13
 + … and (8,3) is the complement: r

3
 + r

10
 + …. In terms of automorphisms the 

elements of (8,1) define a subgroup of  the Galois group G.) 

(2,1)...[1],[16]
(4,1)

(2,13)...[4],[13]
(8,1}

(2,9)...[8],[9]
(4,9)

(2,15)...[2],[15]
(16,1}

(2,3)...[3],[14]
(4,3)

(2,5)...[5],[12]
(8,3)

(2,10)...[7],[10]
(4,10)

(2,11)...[6],[1

  
  

  
 

  
  
  

 
 
 
 

1]

 
 
 
 
 
  
 

  
  
   

   
   

    

 



“The equation (A) whose roots are the sums (8,1),(8,3) is found by the rules of article 351 to be  

x
2
 + x − 4 = 0. (* since (8,1) + (8,3) = − 1 and  (8,1)(8,3) = − 4 *)    Its roots are                                                                                                                      

              −(1/2) + √      = 1.5615528128 and −(1/2) − √      =−2.5615528128 

And we will set the former to be (8,1) and latter (8,3)…. “ 

Gauss derives all the roots but he does not give details for every equation because he has already 

done the more difficult case of n= 19. Below is a summary table for the basic equations which he 

calls (A),(B),(C),(D). These will generate roots [1] & [16] shown in his summery table above. 

(A)  x2
 + x − 4 = 0 Roots (8,1) & (8,3) 

(B) x2
 − (8,1)x − 1 = 0 Roots (4,1) and  (4,9) 

(C) x2
 − (4,1)x + (4,3)  = 0 Roots (2,1) and (2,13) 

(D)  x2
 –(2,1)x + 1 = 0 Roots [1] and [16] 

 

For example to get (B): (4,1)  = r + r
13

 + r
16

 + r
4
  and (4,9) = r

9
 + r

15
 + r

8
 + r

2
  Note that (4,1) is 

just every other term of (8,1). It also defines a subgroup of G1and (4,9) is the complement . By 

definition (4,1) + (4,9) = (8,1), and a little algebra shows that (4,1)(4,9) = −1. 

 

In Article 365, Gauss sets [1] equal to cos(2π/17) + isin(2π/17) so that cos(2π/17) =  
 

 
(2,1) =  

 

 
 [ ]  [  ]  . He notes that this yields the equation given below : 

cos(2π/17) = 
1

1 17 34 2 17 2 17 3 17 34 2 17 2 34 2 17
16

 
          
   

Mathematica gives the same equation by nesting (A), (B) and (C) and simplifying. In the 

compass and straightedge construction process, equation (D) is solved automatically by placing 

the above length on the x-axis and moving up to a unit circle. Algebraically this process is not 

symmetric. The minimal cosine polynomial is order 8, but for sine, it is the full order 16. In 

Mathematica, MinimalPolynomial[ ]  yields the following for 2cos[2Pi/17] and 2sin[2Pi/17]    
2 3 4 5 6 7 81 4 10 10 15 6 7x x x x x x x x       

  2 4 6 8 10 12 14 1617 204 714 1122 935 442 119 17x x x x x x x x          

 

Gauss points out that if a prime n is of the form 2
m

 + 1, then m must be either 2 or 1, so these 

powers of 2 are nested.  “All values of n, therefore that can be reduced to quadratic equations 

are contained in the form    
+1 .Thus the five numbers  3,5,17,257 and 65537 result from letting 

v = 0,1,2,3,4.” 

 

He continues “Whenever n-1 involves prime factors other than 2 we are led to equations of 

higher degree, namely to one or more cubic equations when 3 appears once or several times 

among the prime factors of n-1, to equations of the fifth degree when n-1 is divisible by 5.etc… 

We can show with all rigor that these higher degree equations cannot be avoided in any way, nor 



can they be reduced to lower degree equations. The limits of the present work exclude this 

demonstration here.” 

 

This implies that Gauss had a proof of the necessity for Fermat primes, but it was never 

published. In 1837 Pierre Wantzel published a proof of the necessity. The key to that proof is the 

irreducibility of the cyclotomic polynomial Φ(x) for arbitrary values of n. Gauss never used the 

term „irreducible‟ but he knew the importance of this fact. In article 42 (Gauss‟s Lemma) and 

article 341 he showed that for prime p, the cyclotomic polynomial Φ(x) is irreducible over 

.(This was generalized by Eisenstein and Schönemann in about 1850 but p still had to be 

prime.)  

 

Based on this fact it is obvious that no prime polygon could be constructed unless it was a 

Fermat prime. Suppose p is a prime polygon which can be constructed. Then cos(2π/p) is 

constructible. Therefore it must satisfy a polynomial which is a power of 2 and this implies that 

cos(2π/p) + isin(2π/p) also satisfies a polynomial which a power of 2 (one higher power) . But 

the latter also satisfies the cyclotomic polynomial Φ(x) which is degree p-1 and irreducible. 

Therefore p-1 is a power of 2. 

 

As we pointed out earlier, the only other case that needs to be proven impossible is when n is of 

the form p
k
 for k >1 and p an odd prime. Gauss addresses this issue in the last article of the book, 

article 366. It is clear that he knew how to finish the proof, but he had not yet found general 

conditions for the cyclotomic polynomial Φ(x) to be irreducible. Gauss stated in his diary that he 

had a proof for all values of n, but it was never published. 

 

According to Olaf Neumann “As for the cyclotomic polynomials for arbitrary indices, Gauss 

claimed in entry 136 of his diary, in 1808 that he could prove their irreducibility over the 

rationals for composite indices too. But up to the present time (2007) no one seems to be able to 

reconstruct a proof in „Gaussian style‟ “  

 

Neumann goes on to point out that for constructions of regular polygons, it is only necessary to 

have a proof for powers of a prime and Alfred Lowery states that in all probability Gauss had 

such a proof when Disquisitiones Arithmeticae was published because it would only involve a 

“slight extension of the arguments in article 341”. 

 

(There seems to be some confusion on this issue by members of the mathematical community 

and as of July 2012 the Wikipedia article on cyclotomic polynomials attributes the general case 

to Gauss.) 

 

A proof that the cyclotomic polynomial is always irreducible can be found in section 8.4 of van 

derWarden‟s Algebra, which is based primarily on the lectures of E. Artin and E. Noether. This 

proof does not depend on Galois theory but it does use the uniqueness of prime factorization in 

principle ideal rings. Based on the irreducibility of the cyclotomic polynomial, it is easy to 

provide the sufficient and necessity conditions for compass and straightedge constructions. This 

is done in Section 8.9 of the van der Warden‟s text, and the argument is given below. It is almost 

identical to Gauss‟s argument in article 366 except that irreducibility plays an important part in 

setting the stage. 

http://en.wikipedia.org/wiki/Cyclotomic_polynomial


 

Assume a regular polygon with h sides and set ζ = cos(2π/h) + isin(2π/h) as the primitive hth root 

of unity. Then ζ + ζ
-1

 = 2cos(2π/h). Since this sum is carried into itself only by the substitutions 

ζ→ ζ and ζ → ζ
-1

 of the Galois group of the cyclotomic field, it generates a real subfield of 

degree φ(h)/2. The condition for constructability is that φ(h)/2 and hence φ(h), be a power of 2. 

Now for 1

12 ... rv vv

rh q q (where the qi are odd primes), we have 

1 1 11

1 1( ) 2 ... ( 1)...( 1)rv vv

r rh q q q q      

Thus the condition is that only the first powers of the odd prime factors (vi = 1) may divide h and 

furthermore that for every odd prime qi dividing h the number qi – 1 be a power to the base 2; 

that is every qi must be of the form:  qi = 2
k
 + 1 

 

Which are the primes of this form ?  Note that k cannot be divisible by an odd number except 1 

because otherwise qi would not be prime, so k must be of the form 2
λ
 and therefore  

22 1iq


   

Only the values 0,1,2,3,4 are know to yield prime numbers: 3,5,17, 257,65537 

 

“As soon as the number h contains, besides powers of 2, only primes of the sequence 3,5,17,… to 

at most the first power, the regular polygon with n sides will be constructible (Gauss).” 

 

The proof of irreducibility of the cyclotomic equation for arbitrary n is more difficult than the 

„powers of a prime‟ case. If Gauss felt that the full case was within reach, that could explain why 

he left it to others to complete the construction proof. He certainly knew that the converse was  

true and he did not agonize over it as he did with the formulas at the end of article 356. This 

article privides an important link between cyclotomic theory and quadratic residues and after 

publication, Gauss took 4 years to settle this issue to his satisfaction. 

 

In Disquisitiones Arithmeticae Gauss refers to Section VIII which was never published, but after 

Gauss died in 1855, his student Richard Dedekind published Gauss‟s notes for this section which 

was titled Disquisitiones generales de congruentiis. It was to be a study of higher congruences 

with respect to a prime number and as such would pave the way for a theory of function fields 

and higher order residue classes. These notes were written at about the same time as 

Disquisitiones Arithmeticae  (c. 1797), but they had grown in size and complexity so that it was 

not practical to include them in the original text. 

 

A number of mathematicians worked in this newly emerging field of algebraic number theory. 

These included Lejeune Dirichlet, Carl Gustav Jakob Jacobi, Gotthold Eisenstein, Richard 

Dedekind, Ernst Kummer,and David Hilbert. One of their goals was to generalize quadratic 

reciprocity for higher powers. In 1900 Hilbert proposed the problem of finding the „most 

general‟ reciprocity law for an arbitrary number field. In 1927 Emil Artin found a general 

theorem that answered Hilbert‟s proposal.  

 

Another motivation behind algebraic number theory was to prove (or disprove) Fermat‟s Last 

Theorem which says that there are no integer solutions to x
k
 + y

k
 = z

k
 for k > 2.  In 1847, Gabriel 

Lamé outlined a proof when k is prime. His proof was based on cyclotomic theory where the 

factoring took place in the field of complex numbers. Unfortunately some cyclotomic fields do 



not support unique factorization so his results were not always valid. In 1850 Earnst Kummer 

used Lame‟s methods to show that Fermat‟s Last Theorem was valid for a large class of „regular‟ 

primes and this led to classification schemes for the irregular primes.  

 

The real breakthrough was the Taniyama–Shimura conjecture which provides a link between 

elliptic curves over  and certain modular forms. This conjecture gained credibility when it was 

independently discovered by Andr ́ Weil in 1967. In 1986 Ken Ribet showed that Fermat‟s Last 

Theorem was a special case of the Taniyama–Shimura conjecture. This inspired Andrew Wiles 

to prove that the Taniyama–Shimura conjecture was true for semistable elliptic curves and this 

was sufficient to show that Fermat‟s Last Theorem was true.This proof was completed in 1995. 

The full conjecture was proven in 2001 by Brian Conrad, Fred Diamond and Chris Breuil.  

  

There is no evidence that Gauss attempted the construction of the regular 17-gon. There have 

been many constructions over the years, and the H.D. Richmond‟s 1893 construction given later  

remains is still the favorite among mathematicians.  

 

Below is a very literal construction of 2cos(2π/17) from Benjamin Bold‟s Famous Problems in 

Geometry. It is based on Gauss‟s procedure and we have revised the notation to reflect that of 

Gauss. The construction uses only equations (A), (B) and (C). The two solutions to (C) are  (2,1) 

= r + r
16

 = 2cos(2π/17) and (2,13) = 2cos(8π/17).  These values are approximately 1.864944459 

and 0.1845367189 as seen on the right below. The circle on the right solves the quadratic (C): x
2
 

– (4,1)x + (4,3) = 0.  

 

 

                       
On the left diagram H = {(4,1),−1} and H‟ = {(4,3),−1}. The first step is to find E  = (1/4)SA. 

The blue circle at E defines F and F‟ and the magenta circle at F defines H while the green circle 

at F‟ defines H‟. 

 

 

 

 

 



Appendix A:  Galois Theory 

Definition:Given a field F and an extension K, the Galois group of the extension G(K/F) is the 

group of all field automorphisms σ which map F to itself. (If H is a subgroup of G(K/F) then the 

fixed field of H is the subset of K that is fixed by H.) 

For a given polynomial p(x) =  x
n
 + an−1x

n−1
 + ..+ a1x + a0 with coefficients in F, and (complex) 

solutions z1.z2,..,zn, the corresponding extension is written F[p(x) = 0] and is called a polynomial 

extension.  For z in C, the minimal polynomial over F is the (monic) polynomial of lowest degree 

such that p(z) = 0. 

If two numbers such as z1 and z2 share the same minimal polynomial, they are called algebraic 

conjugates. This is a generalization of the fact that complex conjugates z and  ̅  share the same 

minimal polynomial.  

A field extension of the form F[x
2 

= 0] is called a quadratic extension and in general an extension 

such as F[x
n
 = 0] is called a radical extension. All radical extension have abelian Galois groups, 

so any field that can be reached from F by a sequence of radical extensions has a Galois group 

which is itself has a nested series of abelian subgroups: 

Theorem: (The Fundamental Theorem of Galois Theory) 

Let F be a field of characteristic 0 and let K be an extension field which is the root field of some 

irreducible polynomial f(x) . Let G be the group of automorphisms of K that fix F. Then G is 

called the Galois group of the extension and written G = G(K/F). 

1. For every field F1 such that F  F1  K there is a subgroup G1 of G consisting of those 

elements of G that leave fixed each element of F1 so G1 = G(K:F1) 

2. For G1 as defined in part 1, the order of G1 is the degree of K over F1 so in particular o(G) 

= [K:F]  

3. For every subgroup G1 of G there is a subfield F1 of K consisting of those elements of K 

left fixed by the elements of G1 

4. There is a 1−1 correspondence between the subgroups of G and the extensions of F 

1 2... nF F F F K      iff   1 2... nG G G G    

A polynomial f(x) is solvable by radicals iff its Galois group G is solvable. A Galois group is 

solvable iff  (i) the series ends at the trivial subgroup Gn={1} and  (ii) Gi+1  Gi which means 

that Gi+1 is a normal subgroup of Gi and (iii) each factor group Gi/Gi+1 is cyclic of prime order. 

 

 

 



Example 1: For p prime, the irreducible cyclotomic polynomial Φp (z) = 
    

   
 has (primitive) 

roots {z, z
2
,.., z

p-1
}. The elements of the extension field (z) are the linear combinations of these 

roots (along with 1) , so this is a normal extension. Every automorphism of (z) must map these 

roots to each other, so they are of the form σ(z) = z
k
 for k = 1,..,p-1. Therefore the Galois group 

G is a cyclic group of order p-1 which is isomorphic to Zp
*
. This implies that all subgroups will 

be abelian and hence normal. Therefore all prime cyclic polynomials are solvable by radicals. (In 

fact this is true for any value of n and the corresponding Galois group will be cyclic of order 

φ(n).) 

For example with n = 17 the cyclic Galois group is isomorphic to Z17
*
, the multiplicative group 

mod 17 – which is order 16. As Gauss pointed out, one generator of this group is σ3. (There are 

φ(16) = 8 such generators). Define λk = (σ3)
k
 (where (σ3)

0
 is the identity transformation) and the 

Galois group can be written as G = { λ0 , λ1, λ2 , λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10, λ11, λ12, λ13, λ14, λ15}. 

This defines the first row of Gauss‟s table which is reproduced below. The second row gives the 

exponents after applying each element of G to z. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 

 

For the subgroup G1 take the even elements so G1 ={ λ0 , λ2 , λ4, λ6, λ8, λ10, λ12, λ14}. To find the 

elements of (z) fixed by G1 just apply each element of G1 to z. This yields Gauss‟s (8,1) = z + 

z
9
 + z

13
 + …. and (8,3) is just λ1(8,1) = z

3
 + z

10
 + … Since (8,1) + (8,3) = -1 and (8,1)(8,3) = -4, 

the first quadratic in the chain is x
2
 + x – 4 = 0. The corresponding quadratic extension field F1 

consists of the elements of (z) left fixed by G1, so F1 = ((8,1)) 

The resulting chain of normal subgroups is 

G   G1 ={ λ0 , λ2 , λ4, λ6, λ8, λ10, λ12, λ14}  G2 = { λ0 , λ4, λ8, λ12} G3 = { λ0 , λ8}  G4 = {λ0} 

The corresponding fields are:    F1 = ((8,1))  F2 = F1((4,1))  F3 = F2((2,1))  F4 = F3((1)) 

So the root field of Φn(z) is F4 and each extension is quadratic.  

 

Example 2: The general nth order polynomial with integer coefficients has Galois group Sn 

which is the symmetric group on n elements. It has order n!. The alternating group An is a 

subgroup of  Sn with n!/2 elements and for n > 4, it is simple (and not abelian). Therefore one 

possible series is Sn  An  {1}. This series is not normal and the Jordan Holder Theorem says 

that any two composition series are equivalent. Therefore the general polynomial of order 5 or 

greater is not solvable by radicals. (The Galois groups S1, S2, S3 and S4 are all soluable.) 

 

 



Example 3: N = 11 has Galois group Z10
*
 = C10 which can be generated by σ2 (the automorphism 

that maps z to z
2
). Using Gauss‟s notation, the period 10 table is shown below:. 

 

0 1 2 3 4 5 6 7 8 9 

z z
2
 z

4
 z

8 
z

5 
z

10 
z

9 
z

7 
z

3 
z

6 

 

The period 5 subgroup is C5 which is generated by σ5 and this yields every other term in the table 

above so (5,1) = {z, z
4
, z

5
, z

9
,z

3
}. C5 is a simple group so the chain of normal subgroups is very 

short:  G = C10  G1 = C5  {1}.  

 

The question is, what is F1 ? What field has C5 as its group of automorphisms ? This is the same 

as asking what is the minimal polynomial for 2cos(2π/11), because that polynomial will have 

Galois group equal to C5. If we ask Mathematica this question the answer is  

 

MinimalPolynomial[2Cos[2Pi/11]] = 
2 3 4 51 3 3 4x x x x x      

 

The five elements of G1 are generated by σ5 which clearly fixes the real numbers in [Φ(z)] and 

these have as basis the conjugate pairs s1 ={ z + z
10

}, s2 = {z
2
 + z

9
}, s3 = {z

3
 + z

8
}, s4 = {z

4
+ z

7
} , 

s5 = {z
5
 + z

6
}. These should be the zeros of the minimal polynomial. We can verify that the 

polynomial given above is correct by substitution, or we can derive the coefficients by taking 

sums of products. For example to verify that the coefficient of x
3
 is -4, we need to find all 

products of 2 terms: s1s2 + s1s3 + s1s4 + ..+ s4s5 which is 4(z + z
2
+ z

3
 + …+ z

10
) as given above. 

 

Appendix B: Trisections and Origami Paper Folding 

In a 1988 article in the American Mathematical Monthly, Andrew Gleason discusses the issue of 

which regular polygons would be constructible if angles could be trisected. Not surprisingly the 

answer goes back to Gauss. For trisections to work there must be „towers‟ of 3 in n-1, just like 

Gauss needed powers of 2. With both bisections and trisections it is possible to combine 

quadratics and cubics, so n has to be of the form 2
k
3

j
 + 1, This means that 7 is accessible and so 

are 13, 17,19, 37,.. 

The number of trisections grows with n, but for 7 and 13 one trisection will suffice and 19 needs 

2 (of course 17 needs none). Gleason also points out that quinsections would enable the 11-gon 

to be constructed. Based on results dating back to Gusss, it can be concluded that: 

“.. a regular n-gon can be constructed if, in addition to ruler and compass, equipment is 

available to p-sect any angle for every prime p that divides φ(n).” 

 

 

 

 



Appendix C: Origami Constructions  

Origami is the art of paper folding. The name is derived from Japanese „ori‟ for paper and „gami‟ 

for folding. Origami has been an art form in Japan for more than 400 years, but paper folding as 

played a part in many other cultures – notably in China, Spain and Germany. The related art of 

kirigami allows paper to be cut and pasted as well as folded. 

Origami has recently become a „science‟ due primarily to axioms which can be used to 

characterize the possible constructions. Origami axioms have been proposed by a number of 

authors – notably Jacques Justin, Humiaki Huzita, Koshiro Hatori, Roger Alperin, David Auckly, 

John Cleveland, Robert Geretschlager and Robert Lang. 

The most commonly recognized algorithms are the 7 Huzita-Hatori axioms shown below. They 

are not minimal, but they have been shown to be complete by Roger Lang who is a physicist and 

one of the foremost origami designers in the world today 

1. Given two points p1 and p2, there is a unique fold that passes through both of them. 

2. Given two points p1 and p2, there is a unique fold that places p1 onto p2. 

3. Given two lines l1 and l2, there is a fold that places l1 onto l2. 

4. Given a point p1 and a line l1, there is a unique fold perpendicular to l1 that passes 

through point p1. 

5. Given two points p1 and p2 and a line l1, there is a fold that places p1 onto l1 and passes 

through p2. 

6. Given two points p1 and p2 and two lines l1 and l2, there is a fold that places p1 onto l1 and 

p2 onto l2. 

7. Given one point p and two lines l1 and l2, there is a fold that places p onto l1 and is 

perpendicular to l2. 

The 7 diagrams for these constructions are shown below – courtesy of the wikipedia site on the 

Huzita-Hatori axioms. 

                            

http://en.wikipedia.org/wiki/Origami
http://en.wikipedia.org/wiki/Huzita%E2%80%93Hatori_axioms


These axioms are listed order of increasing „complexity‟. Roger Alperin calls the first three 

axioms the Thalian constructions after Thales who was the teacher of Pythagoras. The fourth 

algorithm allows for bisections, and axioms 1-4 together define the Pythagorean numbers which 

were studied by Hilbert in his Foundations of Geometry. At this stage the possible origami 

numbers are weaker than the compass and straight edge numbers (which are called the Euclidean 

numbers.) David Auckly and John Cleveland discuss this case and show that: 

“Everything which can be constructible with origami is constructible with a compass and straight 

edge, but the converse is not true.”   

For example using axioms 1-4 it is not possible to construct a right triangle with hypotenuse 

√  √    and leg 1. 

Axioms 1-5 together define the Euclidean numbers which are the points constructible by 

compass and straight edge. 

Axiom 6 is known as the neusis axiom because it mimics Archimedes method for trisecting an 

angle. Axiom 7 has been rediscovered a number of times, but it does not add to the possible 

constructions. 

The neusis method involved lining points up with a marked ruler and this is essentially what is 

done in the origami trisection process.These became known as the „Vi ́te marked ruler 

constructions‟ and the set of numbers constructible in this way are called „Vi ́tens‟.  

As pointed out above by Andrew Gleason, trisections of angles (along with the traditional 

compass and straight edge constructions) extends the possible regular polygon constructions to 

include all primes of the form 2
k
3

j
 + 1 for non-negative integers j and k. These are known as 

Pierpoint primes – named after the American mathematician James Pierpont (1866-1938). They 

clearly contain the Fermat primes as a proper subset and Gleason conjectured that there are an 

infinite number of Pierpont primes. The first few are 

2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257 (sequence A005109 in OEIS) 

All of these regular polygons can be constructed with origami using axioms 1-6. We will give an 

example of the regular heptagon by Robert Geretschlager, who has also constructed the regular 

19-gon. Origami experts such as  Kazou Haga and Tomoko Fuse have also tackled the Platonic 

solids.  

Construction the Regular Heptagon with Origami 

The 13-step procedure shown below is due to Robert Geretschlager. He starts with a 4 inch piece 

square of paper which is assumed to be centered at the origin. Using standard origami notation, 

the dashed lines represent „valley‟ folds and dot-dashed lines represent „mountain‟ folds. Thin 

lines represent previous folds. In the figures below, the point M is the origin. A = {-1,-1/2) are B 

http://en.wikipedia.org/wiki/2_%28number%29
http://en.wikipedia.org/wiki/3_%28number%29
http://en.wikipedia.org/wiki/5_%28number%29
http://en.wikipedia.org/wiki/7_%28number%29
http://en.wikipedia.org/wiki/13_%28number%29
http://en.wikipedia.org/wiki/17_%28number%29
http://en.wikipedia.org/wiki/19_%28number%29
http://en.wikipedia.org/wiki/37_%28number%29
http://en.wikipedia.org/wiki/73_%28number%29
http://en.wikipedia.org/wiki/97_%28number%29
http://en.wikipedia.org/wiki/109_%28number%29
http://en.wikipedia.org/wiki/163_%28number%29
http://en.wikipedia.org/wiki/193_%28number%29
http://en.wikipedia.org/wiki/257_%28number%29
http://oeis.org/A005109
http://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences


= {0,1} are foci of parabolas (recall that cubics can generally be represented as intersections of 

parabolas). The point E has y coordinate -2cos(2π/7). 

 

 

 



Appendix D: H.W. Richmonds‟ 1893 Constructing of the Regular 5-gon and Regular 17-gon 

Over the years there have been many different constructions for the regular pentagon and regular 

17-gon. The constructions shown below are due to H.W. Richmond in 1893. (See Mathematical 

Recreations and Essays by W.W. Rouse Ball and H.M.S.Coxeter.) Both constructions are based 

on the same principle and they are simple and elegant. The pentagon construction takes just 2 

steps and the 17-gon construction takes 6 steps. 

 For reference we have drawn the final version of the polygons as they would appear when 

inscribed in a unit circle, with vertex 1 at {1,0}. So in both diagrams P is at {1,0}. 

            

To construct the generating arc for the regular pentagon takes just 2 steps (on the left above) 

(i) Locate point A at (0,1/2) as shown 

(ii) Bisect angle OAP to obtain angle x and this defines point B and vertex 2. 

To construct the generating angle for the regular 17-gon takes 6 steps 

(i) Locate the point A at (0, ¼) 

(ii) To find B, set the angle x to ¼ of angle OAP 

(iii) To find C, make the angle CAB equal to Pi/4 

(iv) The point D is the center of CP and this determines vertex 4 . 

(v) Point E and vertex 6 are obtained from a circle centered at B passing through D  

(vi) Now subtract the two arcs.  

In terms of the Lemoine measure of complexity for constructions, there are slightly less complex 

constructions using Carlyle circles, but no one knows the minimal complexity. 
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